Density and Compressibility of Solutions of NaClO₃, NaNO₃, KNO₃, and RbNO₃ in the Mixed Solvent C₆H₅NH₃Cl (1.0001 m)–H₂O at 30 °C

Maria A. Berchiesi, Gianfrancesco Berchiesi,* and Giovanni Vitali

Istituto Chimico dell' Università, 62032 Camerino, Italy

Density and compressibility of solutions of nitrates and chlorates are measured in the mixed solvent $C_8H_5NH_3CI$ (1.0001 m)-H₂O at 30 °C. The ionic volumes are compared with the corresponding values in other solvents.

Introduction

As a part of our current research on the behavior of type MXO_3 salts in different solvents (1, 2, 5), in the present paper the density and isoentropic compressibility values are reported concerning the solutions of NaClO₃, NaNO₃, KNO₃, and RbNO₃ in the mixed solvent C₆H₅NH₃Cl (1.0001 *m*)–H₂O. The bromates and iodates were not studied owing to the unstability of corresponding solutions. The salts employed are composed by spheric and electrostrictive cations and planar anions with a high component of disordered volume (1, 5).

Experimental Section

The pycnometric and dilatometric methods previously described (5) were employed. These methods enabled us to calculate the apparent molar volume, the first according to

$$\varphi_{\rm v} = 1000(d^0 - d) / m dd^0 + M_2 / d \tag{1}$$

the second according to

$$\varphi_{\rm v,fin} = \varphi_{\rm v,st} - \Delta V / n_2 \tag{2}$$

The viscosity measurements were performed by means of a Höppler viscosimeter manufactured by VEB Freital, DDR, whose details were given in a previous note (3); the fall-tube was on a 10° slope with respect to the vertical of the base plane and was enclosed in a jacket through which circulated thermostated water, originating from an ultrathermostat with exterior circulation. The viscosimeter was thermostated to ± 0.05 °C. The fall time of the ball was measured with a chronometer to 0.1 s. Each measurement was repeated several times and the fall time agreed within 0.1 s. The viscosity is given by

$$\eta = k\bar{t}(d_{\text{ball}} - d_{\text{soln}}) \tag{3}$$

where the constants k and d_{ball} are certified; the lining up of the viscosimetric systems was controlled by measuring the fall time in bidistilled, deaerated, and filtered water and in some oils of guaranteed viscosity, furnished by the same manufacturing firm. The agreement is within 1%. The isoentropic compressibility data were obtained via ultrasonic velocity according to the equation (11)

$$\beta_{\rm s} = 1/u^2 d \tag{4}$$

An ultrasonic interferometer IPPT-PAN (Warszawa) was employed; it consisted of a transmitting part, a receiving part, a minima counter circuit, and an oscilloscope. The pulse method was employed and was described in previous notes (4, 6). The calibration was previously reported (6). Merck high purity chemicals were employed without further purification and were dried under dynamic vacuum at a temperature of $\simeq 70$ °C.

Table I. Experimental Values of Density, Apparent Molar Volumes, Isoentropic Compressibility, and Viscosity of Solutions of $C_6H_5NH_3Cl$ in Water at 30 °C

			10 ⁶ β _s ,	
C, mol/L	d, g/mL	$\varphi_{\mathbf{v}}, mL/mol$	bar ⁻¹	η, cP
0.0756		103.7		
0.0992		103.7		
0.4953	1.008 50	104.1	41.6	0.92
0.9019	$1.018\ 81$	104.4	39.4	1.06
1.6788	1.037 86	104.9	36.5	1.26
2.5459	1.057 85	105.6	34.3	1.62
2.8019	1.063 51	105.8	33.7	1.74
3.6780	1.081 89	106.6	32.2	2.34
3.8561	1.085 66	106.7	31.9	2.50

Bidistilled and deaerated water was employed.

Results

Solutions of $C_6H_5NH_3Cl$ in H_2O . The experimental values of density, compressibility, and viscosity of $C_6H_5NH_3CI-H_2O$ mixtures and the apparent molar volume calculated are given in Table I. The Redlich equation (*12*, *13*) generally is employed to fit the experimental data of φ_{ij} ; in this equation the coefficient of $C^{1/2}$ is the theoretical slope, computable from the Debye–Hückel theory, and the coefficient of *C* is an empirical parameter; in the present case an equation of higher order is necessary

$$\varphi_{\rm v} - 1.956\sqrt{C} = 103.3 - 0.9135C + 0.2132C^2$$
 (5)

with a standard deviation of $\sigma = 0.17$. The Jones–Dole equation (9) is employed generally in order to express viscosity values of dilute solutions, but in the aqueous solutions of C₆H₅NH₃Cl a higher order equation is necessary

$$(\eta - \eta^{0})/\eta^{0}\sqrt{C} = 0.476 - 0.664\sqrt{C} + 0.490C$$
 (6)

with a standard deviation of $\sigma = 0.03$.

A quadratic equation fits the compressibility data (standard deviation $\sigma = 0.14$)

$$\beta_{\rm s} 10^6 = 43.9 - 5.235C + 0.559C^2 \tag{7}$$

Solutions of MXO₃ Saits in 1.0001 m $C_6H_5NH_3CI$. The experimental results of density and compressibility are reported in Table II. The molar volumes are expressed following the Masson equation (10)

$$\varphi_{\rm v} = \varphi_{\rm v}^0 + S_{\rm v} \sqrt{C} \tag{8}$$

because the theoretical slope for the mixed solvent is not known; a linear equation in C is calculated for the compressibility data of solutions of MXO₃ in the mixed solvent. The parameters and the standard deviation are given in Table III.

Discussion

The φ_{v} value extrapolated to C = 0 (eq 5) may be used in order to calculate the volume of $C_{6}H_{5}NH_{3}^{+}$ employing $\varphi_{v}(NaCI)$ at 30 °C (8) and $\varphi_{v}(Na^{+})$ (5); the value obtained (80.9 mL/mol)

Table II. Experimental Values of Density and Isoentropic Compressibility of Solutions of NaClO₃, NaNO₃, KNO₃, and RbNO₃ in Mixed Solvent C₆H₅NH₃Cl (1.0001 m)-H₂O

C, mol/L	d, g/mL	10 ⁶ β _s , bar ⁻¹	
0.0915	1.024 91	39.2	NaClO ₃
0.1625	1.029 62	38.8	
0.2528	1.035 60	38.5	
0.3625	1.042 85	38.3	
0.0921	1.023 65	39.1	NaNO ₃
0.1624	1.027 34	38.9	-
0.2241	1.030 56	38.7	
0.3046	1.034 83	38.5	
0.3629	1.037 82	38.2	
0.0915	1.024 16	39.1	KNO3
0.0917	1.024 14	39.2	
0.1620	1.028 26	38.9	
0.2523	1.033 49	38.7	
0.3614	1.039 80	38.3	
0.0914	1.027 95	39.2	RbNO ₃
0.0923	$1.028\ 06$	39.2	
0.1618	1.034 90	38.9	
0.2519	1.043 89	38.6	

Table III. Parameters of the Masson Equation and of the Equation $\beta_s = \beta_s^{0} + a'C$, Concerning the Solutions of MXO₃ Salts in Mixed Solvent C₆H₃NH₃Cl (1.0001 *m*)-H₂O

. 1.	0			$10^{6}\beta_{s}^{0}$,	,	
sait	φ_{v}	S	σ	bar '	-a	σ
NaClO ₃	38.8	0.941	0.01	39.4	3.24	0.11
NaNO,	31.6	0.711	0.09	39.4	3.20	0.06
KNO ₃	41.7	0.858	0.10	39.4	3.10	0.06
RbNO ₃	46.7	0.529	0.24	39.5	3.78	0.03

is 10% lower than the value calculated as a sphere of radius $r = (a^2 + b^2 - 2ab \cos \alpha)^{1/2}$ (a = distance between the center of aromatic ring and the N center; b = bond length NH; $\alpha =$ bond angle CNH). The dead space for it is an important component of $V^0(C_6H_5NH_3^+)$. The parabolic trend of φ_v - $1.956C^{1/2}$ vs. C with a minimum around C = 1 M points to the probable existence of two effects on \overline{V} (C₆H₅NH₃Cl): electrostrictive and cagelike.

As can be seen from the eq 6 and 7 beyond concentration 1 m also the viscosity increases more and the compressibility decreases less rapidly. The φ_v^0 of the salts examined in this solvent is higher than φ_v^0 in water, and $\Delta \varphi_v^0 = \varphi_{v,solv}^0 - \varphi_{v,water}^0$ is 3.1 (NaNO₃), 2.7 (KNO₃), 2.9 (RbNO₃), and 2.8 (NaClO₃); these values are lower than those corresponding to the other solvent examined (LiCl 12 m) (2): 5.7 (KNO₃), 5.9 (RbNO₃). From the two sets, in C₆H₅NH₃Cl (1.0001 m)-H₂O and in LiCl (12 m)-H₂O (2), we see that $\Delta \varphi_{v}^{0}$ depends principally on the solvent employed and is roughly independent of the solute.

The slopes of the straight lines β_{c}/C concerning the five salts studied are intermediate between the corresponding values of solutions in H₂O and in LiCl (12 m)–H₂O (2); this fact may be ascribed to a more compact structure of the solvent LiCl (12 m)-H₂O in comparison with the corresponding one of C₆H₅NH₃Cl (1.0001 m)–H₂O and H₂O. The Glueckauf method (7), modified and controlled (2) in order to express (a) the dead space as Kr^2 instead of an additive term of the radius and (b) the electrostriction as Az^2/r instead of Az^2/\bar{r} , is applied to the nitrates φ_v^0 .

$$\varphi_{v}^{0} = (4/3)\pi r^{3}N + Kr^{2} - Az^{2}/r + \varphi_{v}^{-}$$
(9)

It gives the following values of A, K, and φ_v : $A = 3.6_5 (\pm 0.6)$ $(\text{\AA mL})/\text{mol}; \ K = 6.6_5 \ (\pm 0.3) \ \text{mL}/(\text{mol} \ \text{\AA}^2); \ \varphi_y(\text{NO}_3^-) = 26.8$ (±0.7) mL/mol. From the additivity law of φ_v^0 , the values of $\varphi_{v}(ClO_{3}^{-}), \varphi_{v}(Na^{+}), \varphi_{v}(K^{+}), \text{ and } \varphi_{v}(Rb^{+}) \text{ may be calculated: } 34.0$ (CIO₃⁻), 4.8 (Na⁺), 15.0 (K⁺), 20.0 (Rb⁺) mL/mol. It is noteworthy that φ_{v}^{+} is increasing and φ_{v}^{-} is decreasing in the direction LiCl (12 m), H₂O, and C₆H₅NH₃Cl (1.0001 m) and that in the same way the electrostriction constant, calculated by the same method, decreases; this last parameter being dependent on the local deformability of the solvent, it may be concluded that the electrostriction and disorder volumes increase with increasing deformability of the solvent.

Glossary

φ_{v}	apparent molar volume; φ_v^0 , φ_v^+ , φ_v^- are values
	extrapolated to $C = 0$, of the cation, of the anion,
()	respectively
Ψv,st [,]	respectively
Ψv,rin Ø	apparent molar volume of the salt in a solvent
TV,SUV	apparent molar volume of the salt in water
d d	density; d^0 is d extrapolated to $C = 0$
η	viscosity; η^0 is η extrapolated to $C = 0$
M2	molecular weight of the solute
7	mean fall time
β_s	adiabatic compressibility; β_s^0 is β_s extrapolated to C
-	= 0
u	ultrasonic velocity
С	molarity
m	molality
Ν	Avogadro's number
r	ionic radius
ΔV	contraction occurring in the dilatometric measurement
n ₂	number of molecules of solute contained in the
	concentrated solution, that dilutes during a dila-
	tometric measurement
k	constant relating viscosity to the fall time and density
	of the solution
σ	standard deviation
S_{v}	slope in the Masson equation
V	molar volume
К	constant in the expression of dead space associated
٨	to an ion
~	constant of the electrostriction law
a F	Solve in the equation $p_s = p_s^2 - a C$
I	of the water dipole

Literature Cited

- (1) Berchiesi, G., Berchiesi, M. A., Leonesi, D., Ann. Chim. (Rome), 65, 249 (1975).
- (2) Berchiesi, G., Berchiesi, M. A., Vitali, G., Gazz. Chim. Ital., 108, 479 (1978). (3) Berchiesi, G., Leonesi, D., Cingolani, A., J. Thermal Anal., 7, 659 (1975);
- 9, 171 (1976).
- Berchiesi, G., Vitali, G., Berchiesi, M. A., J. Thermal Anal., 13, 105 (1978).
 Berchiesi, M. A., Berchiesi, G., Gioia-Lobbia, G., J. Chem. Eng. Data, 19. 326 (1974).
- (6) Berchiesi, M. A., Berchiesi, G., Vitali, G., Ann. Chim. (Rome), 65, 669 (1975).
- (7)
- Glueckauf, E., Trans. Faraday Soc., 61, 914 (1965). Horne, R. A., "Water and Aqueous Solutions", Wiley-Interscience, London, (8) 1972, p 584. (9)
- Jones, G., Dole, M., J. Am. Chem. Soc., **51**, 2050 (1929). Masson, D. O., *Philos. Mag.*, **8** (7), 218 (1929). Matheson, A. J., "Molecular Acoustics", Wiley-Interscience, London, 1971, (11)n 6 ff.
- Redlich, O., J. Phys. Chem., 67, 496 (1963).
- (13) Redlich, O., Meyer, D. M., Chem. Rev., 64, 221 (1964).

Received for review September 11, 1978. Accepted January 22, 1979. Thanks are due to CNR (Rome) for financial support.